New Metal-Ligand Vibrational Correlations for Rh^{I} , Pd^{II} , and Pt^{II} Complexes

By D. M. ADAMS and P. J. CHANDLER (Chemistry Department, The University, Leicester)

WE have examined the far-infrared spectra (60-500 cm.-1) of some planar halide-bridged complexes of the types $[RhX(diolefin)]_2$, $[M_2X_2]_6^{2-}$, and $M_2X_4L_2$, (M = Pd, Pt; X = Cl, Br, I; $L = PCl_3$, $P(OEt)_3$, PR_3 , AsR_3 , SR_2 , SeR_2 , TeR₂, Py, or an olefin). We have also investigated some Pd^{II} complexes containing bridging sulphide groups and some Pt^{IV} compounds. We summarise here our main findings which can be used as correlations.

(i) Halogen-sensitive vibrations

As required by theory all the halide-bridged complexes exhibit two bands associated with the MX₂M unit, due mainly to bridge bond stretching. For the Rh^I complexes two strong bands of roughly equal width and intensity are found; for Pd^{II} and Pt^{II}, the higher-frequency band is generally medium to strong in intensity and much sharper than the lower band which is intense in the $M_2X_4L_2$ series but may be weak or very weak in $[M_2X_6]^{2-}$. Terminal v_{M-x} absorption is found up to 20 cm.-1 higher than in corresponding trans-mononuclear complexes (for chlorides); in the $[M_2X_6]^{2-}$ series the two terminal modes are mostly within 5 cm.⁻¹ of each other. The following ranges (in cm.-1) hold for the $M_2X_4L_2$ compounds, but also include most of the $[M_2X_6]^{2-}$ frequencies:

A:	Pt^{II}	vm-xt	$\nu_{M-X}b$	
	$\begin{array}{c} \mathbf{X} = \underset{\mathbf{Br}}{\mathrm{Cl}}\\ \mathbf{I} \end{array}$	$365 - 340 \\ 260 - 235 \\ 200 - 170$	$335 - 310 \\ 230 - 210 \\ 190 - 150$	$\begin{array}{c} 295 - 250 \\ 190 - 175 \\ 150 - 135 \end{array}$
B:	Pd ¹¹			
	$\mathbf{X} = \mathbf{Cl}_{\mathbf{Br}}$	$370 - 345 \\ 285 - 265$	310—300 220—185†	$280-250 \\ 200-165\dagger$

† For most compounds the ranges 195-185 and 182 - 166 cm - 1 hold.

Too few iodides of palladium have been examined to establish a range. The ranges 290-275; 270-260 and 200-185; 185-175 cm.⁻¹ hold for chloride and bromide complexes respectively of Rh^I.

In trans-[PtX₄L₂] compounds, (X = Cl, Br,) a

(ii) Other metal-ligand vibrations

Goggin and Goodfellow² have recently shown that ν_{Pt-P} lies in the range 442-410 cm.-1 in cis- and trans-mononuclear complexes: Coates and Parkin³ had previously made some more tentative assignments covering a slightly wider range. We support the conclusions of Goggin and Goodfellow because we are led to assign v_{Pt-P} in a region in $[Pt(PEt_3)_4][PtBr_4]$ similar and Pt₂Cl₄(PCl₃)₂. For the former compound, all but three of the bands correlate with known absorption due to $[PtBr_4]^{2-}$ or PEt_3 ; these are at 389, 200, and 185 cm.⁻¹ and we assign them as v_5 , v_{Pt-P} ; δ_{Pt-P} and ν_2, π_{Pt-P} respectively. For ν₆, $Pt_2Cl_4(PCl_3)_2$ we observe six bands in the region 375-320 cm.⁻¹, none of which can be due to internal vibrations of the ligand. We cannot unambiguously assign them all but v_{Pt-P} is probably either at 373 or 346 cm.⁻¹ The following correlations for v_{M-P} are based upon the spectra of our bridge compounds and the data of a previous study.4

 $trans-[PtX_4(PEt_3)_2], trans-[PtX_2(PEt_3)_2], and$ trans-[PtXY(PEt₃)₂], a medium-to-strong bond in the range 418-406 cm.-1; there is sometimes also a weak component some 4-6 cm.⁻¹ to lower frequency.

cis-[PtX₂(PEt₃)₂], and cis-[PtX₄(PEt₃)₂] a medium-to-strong doublet with components close to 440 and 425 cm.-1

 $M_2X_4(PEt_3)_2$, (M = Pd, Pt), a single strong band 450-434 cm.⁻¹ It is of particular interest that Pt⁰(PPh₃)₄ has an intense band at 424 cm.⁻¹ which may be due to v_{Pt-P} .

(Received, December 29th 1965; Com. 800.)

- ² P. Goggin and R. J. Goodfellow, quoted by D. T. Rosevear and F. G. A. Stone, J. Chem. Soc., 1965, 5257.
 ³ G. E. Coates and C. Parkin, J. Chem. Soc., 1963, 421.
 ⁴ D. M. Adams, J. Chatt, J. Gerratt, and A. D. Westland, J. Chem. Soc., 1964, 734.

single $(e_u) v_{M-x} b$ and is found close to the position characteristic of the corresponding trans-[PtX₂L₂]. For cis-[PtCl₄L₂] compounds a complex pattern containing at least two v_{Pt-Cl} bands is found in the region 350-330 cm.⁻¹ followed by a further strong band at 288-265 cm.-1 This pattern clearly corresponds to that found by Beattie and Rule¹ for compounds of the type cis-[SnCl₄L₂].

¹ I. R. Beattie and L. Rule, J. Chem. Soc., 1964, 3267.